

Seat No. _____

HAL-003-2013002

B. Sc. (Sem.-III) (CBCS)

(W.E.F. 2019) Examination

June - 2023

Physics : 301

(Magnetism & Semiconductor) (New Course)

Faculty Code : 003 Subject Code : 2013002

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instructions : (1) All questions are compulsory. (2) Symbols have their usual meaning. (3) Figures on right side indicate marks. 1 (A) Give answer in short: 4 (1) Define vector quantity. (2) Name any two vector physical quantities. (3) Define scaler product of two vectors. (4) Define divergence. (B) Answer any one question: 2 (1) If $\vec{A} = 2i + 3j + k$ and $\vec{B} = 3i + 4j + 2k$ then find $A \cdot B$ (2) Find the gradient of $f = X^2 + Y^3 + Z^4$. (C) Answer any one question: 3 Write properties of scalar product. (1)(2) Calculate the curl of $\vec{V} = Y^2 i + (2XY + Z^2) i + 2YZk$. (D) Answer any one question: 5 (1) State and explain fundamental theorem of Divergence. (2) Explain fundamental theorem of curl. HAL-003-2013002] [Contd... 1

- 2 (A) Give answer in short:
 - (1) What is the unit of charge?
 - (2) Electric field is vector quantity, true or false ?
 - (3) Gauss law is true for any closed surface, true or false ?
 - (4) Which law is useful to calculate electric field at any point ?
 - (B) Answer any one question:
 - (1) If $\vec{E} = 2i + 3j + k$ N/C and area $\vec{A} = i + j + 3k m^2$ then calculate the flux passing through the area.
 - (2) Calculate the electric intensity required to just support an ion of mass 10^{-4} g and having a charge of 1.44 coulomb in air.
 - (C) Answer any one question:
 - (1) Explain Coulomb's law in details.
 - (2) Explain electric potential.
 - (D) Answer any one question:
 - (1) Explain electric flux and Gauss law.
 - (2) Explain electric field around uniformly charged spherical shell.
- **3** (A) Give answer in short:
 - (1) The current carrying wire attract each other what will be the direction of current through the wire ?
 - (2) Write the expression of Lorentz force.
 - (3) Which relation is known as cyclotron formula ?
 - (4) Write the formula of Bio Savart law.
 - (B) Answer any one question:
 - A solenoid of length 0.5m has a radius of 1 cm and its made up of 500 turns it carry current of 5 A .Calculate the magnetic field inside the solenoid.
 - (2) Calculate the magnitude of the magnetic field due to long thin wire carrying current of 15 Amp at a distance of 1 cm from the wire.

HAL-003-2013002]

[Contd...

2

3

5

4

2

- (C) Answer any one question :
 - To find the magnetic field inside the solenoid using Ampere's circuital law.
 - (2) A long wire carries a current of 2 A. An electron travel with a velocity of 40000 m/s parallel to the wire 0.1 m from it in a direction opposite to the current. What force does the magnetic field of current exert on the moving electron? $\mu_0 = 4\pi \times 10^{-7}$
- (D) Answer any one question:
 - State Bio Savart law and derive the magnetic field at a distance R from a long straight wire carrying a steady current I.
 - (2) State Bio Savart law and derive a magnetic field at a distance x from the centre of a circular loop of radius which carries a steady current I.
- 4 (A) Give answer in short:
 - (1) Which kind of biasing is required for operation of photo diode?
 - (2) Draw the symbol of varactor diode.
 - (3) Name the diode which act as variable capacitor.
 - (4) What is the principle of photo diode?
 - (B) Answer any one question:
 - (1) A coil of induction $0.4/\pi$ Henry is joined in series with a resistance of 30 Ω . Calculate the current flowing in the circuit, when connected to a.c. mains of 200 volt and frequency 50Hz.
 - (2) A series LCR circuit has L=1mH, C= $O.1 \mu$ F and R= 10Ω calculate the resonance frequency of the circuit.
 - (C) Answer any one question:
 - (1) Discuss the working and construction of LED.
 - (2) Explain any one application of photodiode.

HAL-003-2013002]

3

[Contd...

5

4

2

3

			-
		(1) Explain construction, working and application of	
		Solar cell.	
		(2) Explain construction, working and uses of	
		phototransistor.	
-			
5 ((A)	Give answer in short:	4
		(1) Why transistor biasing is necessary ?	
		(2) The operating point of the circuit changes when	
		temperature increases due to	
		(3) The operating point is also known as	
		(4) What is the Ideal value of stability factor?	
((B)	Answer any one question:	2
		(1) If in transistor configuration the value of $\alpha = 0.98$,	
		what would be the value of β ?	
		(2) For the transistor amplifier having	
		$R_c = 2 \ k\Omega, \ R_L = 1 \ k\Omega, \ R_{in} = 1 \ k\Omega, \ \beta = 80$	
		find the voltage gain.	
((C)	Answer any one question:	3
		(1) Explain operating point of transistor.	
		(2) Write short note an d.c. and a.c. load line	
((D)	Answer any one question:	5
		(1) Explain voltage divider bias method.	
		(2) Explain cut-off and saturation region of C-E transistor.	